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The dependence of three dimensional numerical integration procedures in spherical polar coordi- 
nates on choice of frame of reference is examined for certain molecular integrals. Strong dependence 
on axial alignment is found for short internuclear distance, and diffuse quadratures, but the results 
improve significantly for large distances and finer integration grids. The implications of this dependence 
to invariance against choice of frame of reference are examined in an SCF study on water. 
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Introduction 

In molecular calculations it is customary to introduce a discrete basis ~b and 
to compute matrix elements of an operator over this basis [1]. The problem of 
actual evaluation of such matrix elements becomes one of computing molecular 
integrals. Several computationally fast methods exist for analytical treatment of 
the problem [2], but a severe drawback for all of them arises from their dependence 
on the particular basis ~b and the specific form of the operator. This imposes a 
development of a separate procedure for each basis and operator. On the other 
hand, one may evaluate molecular integrals on the basis of the definition of an 
integral as a Riemann sum, thus circumventing in principle the necessity for closed 
analytical expressions. In this way only the values of the integrand at certain points 
are required, but for acceptable accuracy the number of points is large, so that the 
method is too slow to be of practical value. The usefulness of this approach is 
enhanced by employing orthogonal polynomial techniques, which efficiently 
decrease the number of points required to achieve certain preset accuracy, thus 
rendering a method of numerical integration of practical utility. 

Numerical Integration 

The problem of approximating an integral by numerical integration is re- 
presented in (1) 1 b 

~w(x)f(x)dx ~ ~ Aif(x,). (1) 
a i=l 

* Present address: Chemical Physics Department, The Weizmann Institute Rehovot, Israel. 
1 This reads: approximate the integral of f (X)  with respect to weight function w(X) over [a, b] by 

the n term sum on the right of (1). 
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When in (1) the X[s refer to roots of orthogonal polynomials, (1) becomes a Gaus- 
sian quadrature formula and mathematical theorems assure generality and prac- 
tical utility of the method 2. It is further known that the degree of an n point Gauss 
formula is 2 n - 1 ,  and since any continuous function can be approximated by a 
polynomial (uniform convergence, theorem of Weierstrass), this means that the 
approximation in (1) becomes exact for any continuous f ( x )  if n is sufficiently 
large. Although (l) is still a slow procedure, even with the help of orthogonal poly- 
nomials, its generality and suitability for fast "Brute force" electronic computing 
make it an attractive possibility in molecular calculations [3]. In the course of 
developing a computing procedure in this laboratory, it became necessary to 
evaluate integrals of certain potential operators by means of three dimensional 
numerical integration in spherical polar coordinates�9 It turns out that under 
normal conditions the results of integration are not invariant towards choice of 
coordinate system. 

Because such invariance is important for the outcome of molecular calcula- 
tions, and because of its relevance to numerical integration in general, we investi- 
gate this point in some detail. 

Method of Calculation 

Let 4~A and ~b B be basis functions centered on A and B. We compute the follow- 
ing integral: 

.[ ~*(xl) V(r l , r2 , . . . , r , ;  xl)dPB(xl)dxl  
space 

oo ~r 2~r 

= ~ Iq~](rtA;OtA;q~lA) V(rl,r2,''',r,;rlA;O1A;q~la)C~B(rlB;O1B;qO1B) (2) 
0 0 0  

�9 r 2 . sin0 a �9 dr A . dO A �9 dq~ A . 

In (2), (rlA ; O1A ; q)lA) are the coordinates of point x 1 relative to local coordinate 
system centered on A (see Fig. 1). 

Since fin is defined relative to local B, it takes its value at xl by some (riB; 01B; 

~OlB). 

Furthermore, if V ( r l , r 2 , . . . , r , ; x O  
Z v  

= -  - -  we have for example, the 
v = l  rv,1 

usual molecular nuclear attraction operator. 
We first n&e that all values of functions in (2) (including q~B) can be expressed 

relative to a single local coordinate system situated at A. Let the origin of B have 
coordinates (X; Y; Z) relative to A (always derivable from input information in 
molecular calculations) then point X1 has coordinates relative to center B 

(XB; YB; ZB) = [(X, -- X); (Ya -- Y); (za - Z)] (3) 

2 1. (existence theorem). For any interval [a, b], any w (X)__> 0 defined on [a, b] and any n in (1) 
there exists a unique orthogonal polynomial Pn(X). (uniqueness up to a multiplicative constant). 

2. [Theorem on Roots of P,(X)]. Let P,(X) be the nth degree orthogonal polynomial for a given 
[a, b] and w(x), then all the roots of P,(X) are distinct, real and inside [a, b]. 
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where 

/ 

( xj Y; z ) 

Fig. 1 

x, = r. sin0.cosq~ 

y, = r. sin0. sintp 

2 a : r" COS (p.  

In (3) we have expressed coordinates of any point relative to local B by its values 
relative to local A, thus enabling us to compute integrals of type (2) by a single 
numerical integration grid centered at A. This establishes the general applicability 
of the procedure. For  the invariance point in question which affects integral (2) it 
is sufficient to have both functions centered at A (i. e. A-= B); this simplifies the 
numerical analysis. In practical applications the integrand in (2) is first trans- 
formed to bring the limits of integration to the limits of the proper quadrature 
range and also to account for the weight function in case in (1) w(x) :A 1. For  inte- 
gral (2) one uses: 

Intagration Range Range of Weight 
quadrature 

Variable transformation 

r (0; co) (0; oo) e -r r=x 
0 (0; rt) ( -  1; 1) 1 0=(x+ 1)7r/2 
~o (0; ~) ( -1;  1) 1 ~o = ( x +  ~)~/2 
q~ (~z; 2r 0 ( -  1; t) 1 (p =(x + 3)=/2 

where in the last column X refers to the value of the quadrature point. The integral 
of the transformed variables (with B = A) now to be approximated has the follow- 
ing form: 

co 1 1 

.[ .[ .I ~ T (r; O; q)) V(ra,'" ,r,;r; O; q~)gP'aT (r; O; q~ldrdOdq~ 
0 --I -a 

., .j .. (4) 

"~ 2 Z Z AiAjAk*p(i,j,k). 
i = l j = l k = l  

In (4) ~p(i,j,k) is the value of the integrand at r,0,q~ quadrature points and the A's 
are the corresponding weights. 
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R e s u l t s  

The numerical calculation was performed for diatomic fluorine with STO's 
possessing Clementi-Raimondi [4] exponents. For  fluorine Z = 9.0 and the po- 
tential function takes the form: 

V ( r t , r z ; r ; O ; q g )  - 9 . 0 f  1 1 1 = + - -  (5)  
r~ 1 rB, 1 

The calculation is repeated with the diatomic axis aligned on the X, Y,, and Z axes 
successively and with different internuclear distances for each alignment. The 
angular (0, ~o) integration is always relative to the same fixed Z axis in any align- 
ment. Since in all calculations the pure one center contribution due to l irA, 1 are 
evaluated exactly by closed expressions, this part becomes an additive constant 
in all numerical values listed in the tables below, and the discrepancies between 

integrals which ought to have the same value arise from the .I ~b*(1)~b](l)dzl part 
which is evaluated by numerical integration, rB,1 

The results of the calculations are compared for the following integrals: 

Integral Axial alignment 

(2SIV(rl,r2; x~)12S) x, y, z 

[(2p~IVI2P~) x 

(2Po[V(q,r2;xOI2Pa) = {(2Py[VIZPy) y 
[.(2P=IVI2P=) z 

[(2SIVl2p~ ) x 
(2SIV(r~,,'2; x,)12Pcr) = {(2slgf2Py) y 

[(2SIVI2Pz) z 

[(2P;~rVI2P;) z 

(2Prcl V(r 1, r 2 ; X 1)J2P~) = ~ (2P~'I VI2P~) x 
[ (2P{I Vp2P:~) y 

D i s c u s s i o n  

Examination of integral Tables 1-4 indicates the following general features: 

1) Accuracy of a given integral generally improves though not monotonically 
with increase in the number of quadrature points. This is a trivial result. At the 
same time, within each category, the integrals for different axial alignment differ 
markedly (most pronounced for the 8 point quadratures). 

2) It is noticeable that the X and Z axis alignment usually produce the most 
accurate integrals 3, whereas the Y axis alignment does not do this to the same 
extent. 

3 The absolute accuracy of the integrals computed here depends on a singularity correction which 
is applicable to integrals with potential of type (5). This problem is dealt with by a procedure to be 
published [5]. Because of the symmetry of the P and S sets of atomic functions, all integrals of certain 
type reported here have the same correction. Thus differences within a certain category in the tables are 
due to the integration process. 
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3) An important feature of the numerical results is that accuracy is improved 
with increase in internuclear distances. While at D = 1.0 the individual differences 
for X, Y,, Z alignment are large, these become smaller at D = 3.0 and virtually dis- 
appear at D = 6.0 a.u. 

This point indicates that for metals and large organic molecules where bond 
distances are large this may be a procedure of acceptable accuracy even with small 
quadratures. The pertinence of these observations for a small molecule, e.g. H2 O, 
is further discussed in the appendix. 

The origin of the dependence on axial alignment and internuclear distance may 
be explained (for simplicity for c a s e  ~ a  = ~ 1  = 2s) as follows: 

Z Axis  Alignment 

For each D and 0 (Fig. 2) the ~p integration defines points on a circle with 
Radius R. sin0 equidistant (r) from point B. Thus the q~ integration for each (D, 0) 

becomes exactly proportional to 
1 n 

- , n being the number of points in 
i=1  r i r 

the ~o quadrature. 

z 

B 

/ t - - - - .  7-- B ~-u 

Fig. 2 

Y Axis  Alignment 

The (R, 0, q~) points are defined as before, but we are not guaranteed a set of n 
points with r I = r 2 . . . .  r n as before. The integral value is approximately proportio- 

n 
nal to - -  ~ - -  and the differences between the two alignments Z and Y are 

i= 1 ri r i  
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b e i n g  s m o o t h e d  as  e i t h e r  n-- ,ov  or  ri--*ov, w h i c h  e x p l a i n  t h e  o b s e r v a t i o n s  in  

p o i n t s  1, 3 m a d e  a b o v e .  

A n  i m m e d i a t e l y  o b v i o u s  r e m e d y  to  t he  s i t u a t i o n  is to  r o t a t e  t he  c o o r d i n a t e  

s y s t e m  so  t h a t  t he  Z axis  r e l a t i ve  to  w h i c h  t he  ~0 i n t e g r a t i o n  is p e r f o r m e d  a l w a y s  

lies a l o n g  t h e  l ine  c o n n e c t i n g  t h e  nuc le i .  T h i s  w o u l d  m e a n  a b a c k  t r a n s f o r m a t i o n  

of  t he  i n t e g r a l  v a l u e  to  t h e  o r i g i n a l  f r ame ,  w h i c h  is c o m p u t a t i o n a l l y  expens ive .  

I n  p r a c t i c e  for  m o s t  s y s t e m s  t h i s  r e f i n e m e n t  is n o t  w o r t h  t he  e x t r a  effort .  

Appendix 

T h e  effect  of  c h o i c e  of  c o o r d i n a t e  s y s t e m  o n  t he  i n v a r i a n c e  of  t he  t o t a l  e n e r g y  

is e x a m i n e d  for  H 2 0 ,  a m o l e c u l e  w h i c h  is s ens i t i ve  to  t he  a b o v e  d i s c u s s e d  p r o c e -  

d u r e  d u e  to  s h o r t  b o n d  d i s t a n c e s  (Roll  = 1.8103 a .u .  0---- 105~ All  p a r a m e t e r s  a r e  

t h o s e  of  M e r r i f i e l d  a n d  P i t z e r  [6 ]  w h o s e  r e s u l t  se rve  as r e f e r ence  (all i n t e g r a l s  be-  

l i eved  a c c u r a t e  t o  1 0 -  6 a.u.) .  

I n  t he  p r e s e n t  s t u d y  al l  t w o  e l e c t r o n  i n t e g r a l s  were  c o m p u t e d  b y  leas t  s q u a r e s  

fit o f  6 G a u s s i a n s  to  e a c h  s l a t e r  o r b i t a l  [7 ] .  

T h e  f o l l o w i n g  p i c t u r e  e m e r g e s  f r o m  t he  S C F  s t u d y  (all v a l u e s  in  H a r t r e e s ) .  

Table 5 

Symmetry Re~ [6] C 2 : Z ( a h :  YZ) C2=X(oh=XY ) C2=Y(oh=YZ ) 

quadratures quadratures quadratures 

8 16 8 16 8 16 

al -20.5046 -20.4454 -20.5261 -20.4384 -20.5166 -20.4601 -20.5344 
al  - 1.2981 - 1.2655 - 1.3035 - 1.2604 - 1.2991 - 1.2781 - 1.3072 
b2 - 0.6386 - 0.6034 - 0.6504 - 0.5956 - 0.6448 - 0.6198 - 0.6554 
al - 0.4715 - 0.4397 - 0.4824 - 0.4341 - 0.4773 - 0.4483 - 0.4867 
bl  - 0.4251 - 0.3928 - 0.4362 - 0.3904 - 0.4313 - 0.4016 - 0.4407 
al  0.4013 0.4999 0.3994 0.5111 0.4098 0.4618 0.3916 
b2 0.5909 0.6858 0.5632 0.7114 0.5767 0.6395 0.5520 

Etota I --75.6556 -75.5776 -75.6704 -75.5567 -75.6589 -75.6233 -75.6797 

With 8 point quadratures the results are obviously not invariant to choice of axial alignment but the 
picture improves with 16 points and for approximate calculation choice of a 24 point quadrature may 
make these differences insignificant. It is encouraging that even for this sensitive case of H20 with very 
short bond lengths the orbital symmetries and energies give the correct picture already with 8 point 
quadratures. 
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